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dominated by the viscous shear stresses when @d, /U_ < (= 10) and by the acoustic components

when wd, /U _> (= 10). For the point frequency spectrum, the most recently published model by

Smol’yakov (2000) is shown to be the most accurate. Using Smol’yakov’s (2000) point frequency
model in conjunction with the normalized wavevector-frequency spectrum (normalized by the
point frequency spectrum) of either the Modified Corcos or the Combined Chase model, pressure
spectra are predicted with reasonable accuracy up to 20 kHz measured by hydrophones from 0.1-
inch to 1-inch diameter flush mounted on various buoyancy propelled vehicles. In an analysis
using finite-element structural models, cross-spectra are the most convenient form of forcing
functions. In this case, the Modified Corcos cross-spectral density function is recommended since
no known cross-spectral density function can be obtained to express the inverse Fourier transform
of the Combined Chase wavevector-frequency spectrum. The Modified Corcos cross-spectrum is
simple and in good agreement with the Combined Chase spectrum in a broad range of subsonic
wavenumbers.
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1.0 INTRODUCTION

For a ground vehicle (in air) and a submerged vehicle (in water), the turbulent boundary layer
(TBL) flow on its surface is essentially incompressible flow because the Mach number, M, of a
ground vehicle is about one-tenth while for a submerged vehicle it’s about one-hundredth. The
direct aero- or hydro-acoustic radiation from a smooth vehicle body in the equilibrium flow
region is believed to be small since the efficiency with which turbulence energy is converted to
radiated sound is proportional to the fifth power of Mach number. The near field pressure
fluctuations beneath a TBL, the pseudo sound, however, are intense. They feed energy into a
structure and result in structural vibrations. The subsonic vibratory energy may subsequently
convert into sound due to scattering by structural discontinuities such as rib-stiffeners, joints,
frames, and bulkheads, etc. In a shell structure, sound may also radiate directly from the
acoustically efficient membrane and shear wave vibrations.

This report is the first of a series of reports to document the result of recent research on modeling
the forcing function and predicting the flow-induced vibration and noise from a submerged
vehicle body. This work was funded by the Office of Naval Research (ONR Code 333, Dr. Kam,
Ng, the Scientific Officer) under the Torpedo Stealth Technology Program (Contract No.
NO00014-00-0058-17), from FY1999 to FY2001.

Analyses of the vibroacoustic response of a structure to the stochastic loading by TBL pressure
fluctuations have been investigated extensively over the past forty years. Classical analyses were
focused on the flow-induced vibrations of infinite plates and finite flat panels (Powell, 1958;
Davies, 1971; Blake, 1986). The TBL forcing function is commonly expressed as the second
moment of statistics of the pressure field, the space-time correlation function, or its Fourier
conjugate, the wavevector-frequency spectrum. The partial (temporal) Fourier transform of the
space-time correlation function, the cross-spectral density function, is also frequently used. For
an infinite plate, analyses were performed in the wavenumber-frequency domain via the spatial-
temporal Fourier transforms of both the forcing function and the structural impulse response
function. For a finite panel, analytical solutions are usually obtained via the eigenfunction (or
modal) expansion method. The modal force auto- and cross-spectra can be calculated either
directly from the integration of the triple product of the TBL cross-spectral density function and
two eigenfunctions each of which specifies the generalized displacements at two separated points
of the panel, or from a wavenumber-frequency analysis using the wavevector-frequency
spectrum and the spatial Fourier transform of the eigenfunctions.

A submerged vehicle body is most likely a cylindrical body that includes several segments of
rib-stiffened shells, elastic joints, appendages, internal machinery and its support structures. It is
difficult for analytical models to account for the details of these complexities. Using Finite-
element structural models created by commercial computer software, such as the SARA-2D or
3D code, is more tractable. When finite element models are used, the forced response can be
calculated directly from the frequency response function of structures and the TBL cross-spectral
density function. With this application in mind, this effort is not only focused on the wavevector-
frequency spectra but also on the cross-spectral density function.



A recent comparison of models for the wavenumber-frequency spectrum of turbulent boundary
layer pressures was published by Graham (1997). His work focused on the pressure fields of
airframes at subsonic flows. A broad general overview and some reflection on forty years of
research of the subject were given by Bull (1996). The purpose of this work is, however, to focus
on a critical assessment of the various wavevector-frequency spectral models as well as the
corresponding cross-spectral density function models for marine structures. A theoretical
overview on turbulence-structure interactions and the mechanisms that cause the low-
wavenumber spectra are discussed in great detail. A few prospective models have been evaluated
with respect to their consistency with theory and data. Eventually, a model is selected that
reflects the current state-of-the-art. A limited verification of the model has been provided by
comparing the analytical results using the proposed forcing function model with the hydrophone
data reported by Haddle and Skudrzyk (1969) and Abarbanel, Katz, and Cembrola (1994) from
buoyancy propelled test models. The agreement between the predicted values and measured data
are reasonably good.

Due to the rather limited available data, the model is not presented as having been thoroughly
validated. However, this model is presented to the marine acoustics community for further
validation, or refutation, with the data that may be available to the broader community. In the
mean time, the authors will also continue to examine the model with new data obtained in future
experiments.

2.0 TURBULENCE-STRUCTURE INTERACTIONS

In the field of vibration and acoustics where a structure is exposed to turbulent boundary layer
flows, the common interest is to know the time history or the frequency spectrum of the vibration
and noise. Turbulent pressures on the surface of the structure are unrepeatable and are randomly
fluctuating signals both in time and space, but structures have rather well behaved spatial and
temporal characteristics. In highly subsonic flow, the predominant spatial scales of the wall
pressure fluctuations are extremely small and the pressures measured by a finite sensor vary with
the size and shape of the sensor. Structural wave scales are usually much larger than the
predominant TBL scales. In an infinite homogeneous plate beneath a homogeneous TBL flow,
the predominant small scale convective pressures will produce no net force to excite the larger
scale plate bending waves. Plate bending wave vibrations can only be excited by the TBL
pressure components of the matching scales. These are the so-called low-wavenumber
components of the TBL pressures, which are believed two to several orders of magnitude smaller
than the predominant higher wavenumber convective components. Understanding the generating
mechanisms and quantifying the levels of the low-wavenumber TBL wall pressure components
have progressed rather slowly during the past four decades because of measurement complexities
and theoretical controversies (Blake, 1986). Structural response may be expressed as a
summation of certain modes, which lower order modal length scales are of the order the
dimension of the structure. At any instance of time, the distributed fluctuating pressures produce
a net force on the structure, which may be expressed as a summation of a number of individual
modal forces. At this point, it may be worthwhile to give a brief overview of how the modal
forces are determined and handled in the analysis involved with a stochastic force field. The
purpose of this discussion is to provide some justification and rational on reaching the



recommended model, which is dramatically different from the well known Corcos model
(Corcos, 1963).

Based on classic analyses, the governing equations of a homogeneous planar vibrator can be
written as follows:

2!
ms—zw(x,t)+Lw(x,1) = p(x.1) (1)
t

where m is the mass per unit area, L is a linear stiffness operator, and w and p are the plate
displacement and the external force per unit area, respectively. Both w and p are functions of
position vector x = (x;,x3) and time ¢. In this report, we use x; and x3 to denote the streamwise
and spanwise coordinate, respectively. The solution, w(x,t) , of this differential equation can be

expressed as the following series expansion in eigenfunctions, ¥, (x),

w(x,t)=Zap(t)u/#(x) (2)

where a,(1)’s are time dependent constants which are treated as the generalized coordinates in the
function space. Eigenfunctions, ¥,(x), and the corresponding eigenvalues, a)f, are the discrete

sets of functions and values that satisfy the boundary conditions and
3)

which is the result of substituting y(x,t) = (x)exp(—iax) into the homogeneous part of Eq. (1).
Substituting Egs. (2) and (3) into Eq. (1) and multiplying both sides with the factor y, (x), then
integrating all terms over the surface of the plate results in,

4

and
(5)

where M, is the mode mass, F\(¢) is a generalized or modal force, and the simplicity of Eq. (4) is
due to the orthogonality of eigenfunctions. Once the modal force is determined the modal
response to the excitation can be calculated from Eq. (4). It is extremely important to note that
the net excitation force as a function of time is the instantaneously area integrated force, as
shown by Eq. (5). The following discussion will show the relationship between the modal force
and the space-time correlation function.

2.1 Modal Force, Space-time Correlation Function and Wavevector-Frequency Spectrum

If an ensemble average is performed (shown by the upper bars) on the product of modal forces,
ie.,



A A

Obviously, the left-hand-side is the cross-correlation of the modal forces. In order to obtain this
correlation function, one first needs to obtain the area integrated force shown by Eq. (5) at any
instance of time and then proceed with the ensemble average. This is what actually happens in
the real physical situation. Since p(x,?) is not a deterministic variable, evaluation of Eq. (5) is

not possible except when a statistical simulation such as the Monte Carlo method is used.
However, after applying the standard procedure in random analysis that deterministic variables
such as ¥ ,(x) are unaffected by statistical averages in Eq. (6), one has

A A
where p(x,t)p(x',t’) is by definition the space-time correlation function of the pressure field.
Assuming p is a stationary and homogeneous random process, then the modal force cross-

correlation is only a function of a temporal shift, i.e., Rﬂv ()= F# (t)F,(t + 7). Similarly, the

space-time correlation function of the pressure is only a function of a spatial shift, &, (separation
distance between two points) and a temporal shift, z That is,

R, (&, 7)=R,(x-x',7)= p(x,t)p(x',t'). Accordingly,
R (@)= [[[[W, oOR, (x- 2, 7w, (x')dx'dx

The Fourier transform of the above expression with respect to 7leads to
Fu (@)= [Ju, ) [T, (x- 2\ ), (x")axds Q
A A

where Fﬁ, (w)is the modal force cross-spectral density function which is the Fourier transform of
the modal force cross-correlation function, Rﬂv (r);and I” p(f,w) is the cross-spectral density

function of the pressure field which is the partial Fourier transform (with respect to 7only) of the
space-time correlation function, R,(¢,7).

The wavevector-frequency spectrum is the spatial and temporal Fourier transforms of the space-
time correlation function and is accordingly the spatial Fourier transform of the cross-spectral
density function, i.e.,

(8)



The modal force cross-spectrum can also be evaluated in the wavevector-frequency domain if
one defines the Fourier transform of the eigenfunction in such a way that

9)

where the value of ¥, (x) must vanish outside the area of the structure. The integration limits in
Eq. (7) can then be extended from -eoto o, and it is obviously equal to the integral of the

product of ,(x) and the convolution, I J'I“p(x - x'yw)y,(x")dx' . The Fourier transform of

the convolution is @ (k,w) S, (k) . Based on Parseval’s theorem on the integral of the product of

two functions, the integral shown by Eq. (7) can be equivalently evaluated by

(10)
The modal force auto-spectrum is then obviously,

(11

which is the wavenumber sum of the product of two power spectra, the wavevector-frequency
spectrum of the pressure field and wavevector spectrum of the mode.

The space-time correlation function is a real value function which may be considered as a 3-D
extension of the auto-correlation function in the time series analysis. In an ergodic process, an
ensemble average may be substituted by a more tractable sample average. For example, in a
random sample of time series, the auto-correlation function can be obtained as follows: A given
sample function of time is multiplied by the same function shifted by a given time interval (7);
the average value of this product over a sufficient extent of time constitutes one point of the
auto-correlation function of a particular shift. A complete auto-correlation function can then be
obtained by repeating the process for all values of the time sift. Similarly, if one can obtain a
random sample in space and time, p(x,, x3, ), the space-time correlation function at a spatial and
temporal shift, (£, &, 7), can be obtained by the following averaging over a sufficient extend in
both space and time, i.e.,

(12)

When this process is repeated for all necessary values of (£, &, 7), the space-time correlation
function can be displayed by plotting it as a function of (£, &, 7). The data in the original record,
p(xy, x3, t), which is usually lengthy in time and space, can now be compressed into a much

10



shorter function of (£, &, 7). This averaging process has caused the loss of detailed spatial and
temporal signatures of the random sample, i.e., one can no longer recover the original record
using the space-time correlation function. The original phase information is also Like an
auto-correlation function corresponds to a power spectrum in frequency, a space-time correlation
function, shown in Eq. (12), corresponds to a power spectrum in wavenumber and frequency.
The space-time correlation function defined above can therefore be used to determine the modal
force auto- and cross-spectra of an elastic structure.

The spatial averaging shown above is essential since the net excitation force as a function of time
is the instantaneously area integrated force [see Egs. (5) and (6)]. This point may be further

exemplified as follows. Let P(kl,kB,w),P(k;,k;,a)' )and ® (k,,k;,w )be the Fourier transforms
of p(x,,x,,1), p(x ,x,t ) and R(¢,&;,7), respectively. The right-hand-side of Eq. (12) is the
convolution between p(x,,x,,t) and p(x ,x; .t )of negative shifts. The Fourier transform of the
convolution, Eq. (12) is therefore, l

(AT)— e

or the Fourier transform of the pressures, P(k,,k,,@) and P( k; ,k;,w ), must be orthogonal, i.e.,

which means P(k ,k,,w ) must be orthogonal with respect to ensemble average. This can be

guaranteed only when both the spatial and temporal averaging are carried out in a sample
average.

We have discussed at this point the relationship between the modal force spectrum of a planar
structure and the space-time correlation function (or its Fourier conjugate, the wavevector-
frequency spectrum). The choice to use the space-time correlation function or the wavevector-
frequency spectrum in analysis may depend on personal preference or on what kinds of analyses
are involved. For example; when one needs to evaluate the TBL induced noise on an imbedded
sonar array (Blake, 1986), it would be most convenient to conduct analysis in the wavevector-
frequency domain. However, it will be more convenient to use the space-time correlation
function or the cross-spectral density function to compute the flow-induced vibration of a
structure when a numerical model, such as a finite-element model, is used to represent the
structure (Hwang, 1998; Hambric and Hwang, 2000).

2.2 Two-Point Correlation and the Corcos Cross-Spectrum
In order to determine the space-time correlation function discussed above, the time histories of a

2-D array of a large number of small pressure sensors must be recorded. This is not practically
feasible. The time averaged two-point cross-correlation function had consequently been

11



velocity fluctuations in turbulent flows. The main purpose of this measurement was to
understand the structure of turbulent flows such as the effective convection velocities and the
average life-times of eddies of various sizes. The two-point velocity correlation peaks for pairs
of values of £ (streamwise separation) and 7 (time delay) are such that £/7=U, is approximately
constant and equal to the local mean velocity. This velocity is called the convection velocity.
Early measurements by Willmarth (1958) revealed that the pressure field at the wall reflected
similar behavior. Obtaining the space-time correlation function without carrying out spatial
averaging may be justifiable based on the Taylor hypothesis that space correlation and temporal
correlation are simply related through the convection velocity. It may also be argued that space
average can be substituted as a time average in an ergodic process. Generally speaking, the two
point pressure cross-correlation is obtained by time averaging over a sufficient amount of time
the product of the time history recorded at a point (x;,x3,¢) and that recoded at a different point
with a time shift, (x;+&,x3+ &,1+7):

(13)

When the above correlation is measured with zero spatial shift, one obtains the autocorrelation
function, of which the Fourier transform yields the frequency spectrum.

The cross-spectral density function, /(¢,,&,, ), may be obtained by the Fourier transform of
R(¢,,&,,7) with respect to 7. It may also be determined from the filtered narrow band cross-

correlation. Corcos [1963, 1964] used the data from narrow band cross-correlation measurements
to come up with the well-known Corcos cross-spectral density function. Corcos [1964] argued
that since R( él,§3,r) is a real function, its Fourier transform with respect to time,

F(él’ég;w)=(l/27[) J.R(él,é,-[)e—imrdz_,

must have a real part symmetric in @ and an imaginary part anti-symmetric in @. For the
streamwise correlation (at zero lateral shift) in particular, the correlation function and the cross-
spectrum must be related by:

R(¢,0,7)= T!‘(&,,O,w)e“"da)
= (14)

= [171¢.0,0)|cos(@r + @)dw

If the output of two pressure sensors separated by (£, 0) is filtered by two identical narrow band
filters of unit width, the averaged (over time) value of the product of their output R,(£,0,7)is a

non-decaying periodic function of 7 i.e.,

12



The amplitude and phase angle, @, of I"(£,0,w) are therefore readily measured. Since £/7=Uc,

the phase angle and the average translation velocity are related by a= -w&Uc. In practice, the
narrow band space correlations are often measured with zero time delay, z=0. In this case, the

phase angle is simply determined by @ = tan™'[Im I"(£,0,w)/Re I"(£,0,w)] (Farabee and
Casarella, 1991). Accordingly, when the trivial imaginary term is included, Eq. (14) becomes,

R(¢.0.0) = [{{7(&.00)e% " Jedo, (15)

—e

The term inside the bracket, { }, represents the cross-spectral density function. The ratio
between the amplitude of the unit bandwidth cross-correlation, |F ( fl,O,a))| and the square root of

the product of auto-spectra at (x;, 0) and (x;+£, 0) is the narrow band cross-correlation
coefficient,

Based on the data available at the time (Willmarth and Wooldridge, 1962; Corcos, 1962), Corcos
found that A is approximately a function of w& U, only, while U_/U, is a weak function of

w8 /U_ and £/8°. Both the magnitude and the argument of 77(£,,0,w) are therefore a function

of the similar variable w&U., which indicates that the narrow band temporal and space
correlation are similarly related through the convection velocity. From Eqgs. (14) and (15), the
streamwise cross-spectral density function is now obviously,

(16)

Based on the lateral correlation measurements by Willmarth and Wooldridge (1962) and
Bakewell, et al. (1962), the data suggested the lateral cross-spectrum to be

(17)

and according to Eq. (15),

R(0.£,7=0)= [4,(@)B(a;/U,)do.
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The lateral cross-spectrum was verified by Corcos (1964), since the comparison between the
measured and computed R( 0,¢,,7 =0) using the measured values of ?, (w) and B(w¢,/U,) was

excellent. Finally, Corcos assumed his well known cross-spectral density function as,
(18)

where C is a rectangular product of A and B, i.e.,

In highly subsonic flow, the predominant spatial scales of the wall pressure fluctuations are small
and the pressures measured by a finite sensor vary with the size and shape of the sensor. The
attenuation of wall pressure by a finite size pressure transducer causes the uncertainty of spatial
resolution of the pressure field. The uncertainty of spatial resolution also causes the uncertainty
of pressure resolution in time. This motivated Corcos (1963, 1967) to investigate quantitatively
the attenuation of TBL wall pressure frequency spectral density as well as the cross-spectral
density by a finite pressure sensor. In order to accomplish this, he needed a specific analytical
model of the TBL pressure cross-spectral density function. Based on a careful inspection of data
obtained in fully developed pipe flow experiments available at the time, Corcos (1963) proposed
to express the above general forms of the correlation functions more specifically as

(19)
and
(20)

where ¢, and ¢ are the longitudinal and lateral decay rates of the coherences, whose typical
range of values are 0.10-0.12 and 0.7-1.2, respectively.

2.3 Corcos’ Wavevector-Frequency Spectrum

The Corcos’ wall pressure wavevector-frequency spectrum can be obtained by taking the spatial
Fourier transform of Eq. (18), i.e.,

21

which results in
(22)

and
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where the wavevector, k=(k),k3), is the Fourier conjugate of &(&,&), and E, =kU./® and

k3 =k3U./@ are the similarity wavenumbers or the normalized streamwise and spanwise
wavenumbers, respectively. The wavevector-frequency spectrum is now expressed as
¢, (W)U, | w)? f(k, ,k3 ) where f(k, ,k; ) is anormalized dimensionless wavevector spectrum,

ie., f(k, ,123 )=, (k, ks, w) /9, (w)U, /w)*], which is the Fourier transform of the correlation
function, A(w¢, /U, )B(wé,/U,) exp(ia)fl/Uc) , and according to Eq. (22), the integrated sum of
f(k, ,I% ) over wavevector plane, (k, ,k,) = (U./w)*(k,,k,), should be unity. Therefore,

1 (I.(,l ,12'3 ) indicates merely how the narrow band frequency density is distributed over the
wavevector plane.

The low wavenumber components have been identified as the main source of the TBL excitation
of a large structure because the high wavenumber components are averaged out on the structural
surface in a way similar to the attenuation of the TBL wall pressures by a finite sensor. For a
large clamped plate, the structural acceptance of TBL excitation is contributed mainly in a
narrow wavenumber band centered on the plate flexural wavenumber which is, in most practical
situations, much lower than the convective wavenumber. There is no clear cut definition of the
low-wavenumber region; this region covers the subconvective wavenumber range usually within
the range where —0.25 < k,/k. < 0.25, and where, k. =UJ®, is the convective wavenumber. As
shown in Fig. 1, the Corcos’ wavevector-frequency spectrum is predominantly convective and
the low-wavenumber contents are extremely low; they are not observable when plotted in linear
scales. When the spectrum is plotted in a logarithmic scale, however, the low-wavenumber
region of the spectrum is now graphically observable and varying slowly (wavenumber white) in
the region.

Since @;°<<I, Corcos’s @, (k,w) at zero and convective wavenumbers, is then approximately,
(24)

The effects of convection and the decay of turbulence on the wavenumber-frequency spectrum
(Keith and Abraham, 1997) is then obvious. The zero wavenumber spectrum is approximately

a‘f (= 0.01) times that at the convective ridge and therefore it is about 20 dB lower than the
convective ridge level. However, this low-wavenumber level is believed to be about 20 dB
higher than experimental values. The supersonic region of the spectrum (|k|/ k. <<1)is a small

region within the low-wavenumber region and could be the source of sound radiation contributed
by the fluctuating dipoles according to Curle (1955). The high level low-wavenumber white
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spectrum discussed above may indicate a significant sound radiation from a very low speed
turbulent boundary layer flow over a rigid surface even though the flow is virtually
incompressible. However, many well known theories indicate the contrary. For example,
Kraichnan (1955), Phillips (1955) and Chase (1980, 1987) have shown that the low-wavenumber
pressure spectrum of an incompressible turbulent flow must vanish at zero wavenumbers; i.e.,

@ (k,w) > 0 as k,=>0 . This theoretical result also has a severe implication: an incompressible
turbulent boundary layer flow over an infinitely large smooth rigid plate will exert no net normal
fluctuating force on that plate.

The Corcos cross-spectral density function shown by Egs, (18-20) was fitted with measured data
within the range, 0.7w8" /U, <w{&, /U, <10. There is no data available for & <0.75" and

& >10U, / w . The analysis conducted by Corcos for the evaluation of the finite size transducer
attenuation involved double area integrals of the product of the cross-spectral density function
and the two transducer response kernels over the transducer surface. Each response kemnel relates
the area-averaged output of the transducer caused by a unit pressure at a given point of the
transducer. Using the above cross spectral density functions was satisfactory for a small sensor.
For a large sensor such as a rigid piston, the evaluation of the integrals must be carried out over
large values of &(&,&). In this case, Corcos pointed out that using Egs. (18-20) is not fully
justifiable and potentially inaccurate, because the coherence for such large spatial separation is
not known. For example, for a circular piston of 1 meter diameter, the required information about
the correlation must be valid for & as large as 1 meter. The data available for &, however, are
less than 0.16 meter (=10U_/w) at 1000 Hz when U_=10 m/s. In addition there is also a lack of

correlation information when the longitudinal separation is small, say & <0.74".

Corcos Spectrum 1000 Hz
Corcos Spectrum 1000 Hz
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Figure 1. Corcos’s Normalized Wavevector Spectrum Plotted in Linear and
Logarithmic Scales

Since obtaining the wavevector-frequency spectrum via a spatial Fourier transform involves
integrations over large values of &=(£,&3), using the cross-spectral density function shown in
Eqgs. (18-20) is again not appropriate. Corcos (1964) also indicated that the magnitude of
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I'(£,,0,w) is a measure of the convective memory of a frequency component of the wall

pressure. Therefore, Corcos’s cross-spectrum is dominated by the convective pressure
components and, as pointed out by Chase (1980), its corresponding wavevector-frequency
spectrum is only valid at and near the convective wavenumber. Since a direct measurement of
the space-time correlation function as indicated by Eq. (12) is not feasible, the crucial low-
wavenumber spectrum must be measured experimentally. The wavevector-frequency spectrum
may then be empirically fitted with data. From this one may also find the space-time correlation
function and the cross-spectrum by inverse Fourier transform of the wavevector-frequency
spectrum.

2.4 Kraichnan-Phillips Theorem and Chase’s Wavevector-Frequency Spectra

Seven years before Corcos’ model was published, Kraichnan (1956) investigated the pressure
fluctuations exerted on a flat plate by incompressible turbulent boundary layer flows. In
underwater applications, the flow is incompressible due to the very small Mach number.
Kraichnan (1956) rewrote the incompressible Navier-Strokes equation that led to the Poisson
equation for pressure fluctuation, p:

(25)

where v is the particle velocity and p s the fluid density. A concise description of the Kraichnan
theorem given by Dowling (1998) will be summarized as follows:

For an inviscid flow over a rigid surface S with normal n, the pressure must satisfy the boundary
condition

n-Vp=0 (26)

A Green function G(x/y) for Laplace’s equation that satisfies the boundary condition can be used

to recast Eq. (25) into the integral form:
2

)
= / - 27
p(x,1) VjG(x y) Sydy 27)

incl

In the case of an infinite plane surface, y,=0, G is just the half space Green function.
Accordingly, Eq. (27) can be simplified to

p(x,t)——I(|x yl +|x yl )M

J

(28)
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where V denotes the half space, y, > 0, and y* is the mirror image of the point y with respect to
y2=0. Let Ps(k,w) and pVij(y2,k,w) be the Fourier transform (with respect to xi, x3, and ¢) of
pressures on the surface, p, (x,,0,x,,7), and Reynolds stress, ovivj(x1,y2,x3,t), respectively. The

half space Green function becomes one-dimensional, i.e., G(y,) = —e 1/ |k| (Ffowcs Williams,
1982; Eq. 2.15). This leads to

(29)

where k is the planar wavevector, k=(k,k3). Since the wavevector-frequency spectrum and the
pressure Fourier transform are related by

¢, (k,w)d(k-k")o(w-w")=P,(k,w)P.(k',@"),

Eq. (29) indicates a |k|2 dependency for the wavevector-frequency spectrum known as the

Kraichnan-Phillips (1956) theorem for incompressible inviscid flows. A further analysis was
carried out by Kraichnan to examine the behavior of P, (k,w) at k=0. He concluded that the

limiting value of P (k,w) as k > 0 is zero and the integral of the pressure correlation over the
boundary surface must vanish.

Also published in 1956, Phillips’ work aimed at investigating the strength of an acoustic dipole
that could cause aerodynamic surface sound from a plane turbulent boundary layer. He starts
with the similar governing equations used by Kraichnan, but instead of solving the differential
equations, he performed a stochastic average of the equation and then integrated it with respect
to the position variable throughout the space outside the boundary surface. By applying Gauss’s
theorem and boundary conditions (normal velocity at the surface and the contributions over the
surface at infinity vanish), the integrated and stochastically averaged differential equation was
reduced to the following important relationship: The surface integrated normal stress is equal to
the volume integrated time-derivative of liner momentum. From this, he showed that the mean-
square momentum per unit area (the momentum of the fluid in a large area squared, averaged
and then divided by the large area) of a shear layer over a flat plate must vanish at low-speed
incompressible flow. Consequently, the dipole sound radiated per unit area must also vanish,
which means the pressure spectrum must be zero at zero wavenumber. Kraichnan and Philips
results were also referred to as Kraichnan-Philips’ low-wavenumber constraints by Ffowcs
Williams (1982).

Chase (1980, 1987, 1991, 1993) is a seminal contributor of this field. The well known Chase
model was first published in 1980. This is perhaps the first descriptive modeling of the
wavevector-frequency spectrum for incompressible inviscid flows that follows the Kraichnan-
Phillips low wavenumber constraints. His model was developed based on a comprehensive
analysis of the fluctuating velocity field statistics and the existing low-wavenumber pressure data
available at that time. The low-wavenumber spectrum is thus proportional to the square of the
wavenumber and vanishing at zero wavenumber; i.e., ®y(k,w) > 0 as (k;, k3)=>0. In the follow-
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up paper (Chase, 1987), Chase reexamined the character of the wavevector-frequency spectrum
and modified the spectrum to be wavenumber independent (or white) and consistent with

experimental data in the subconvective domain, 1/6 < k; << w/U,_, where J'is the boundary

layer thickness. For the region, a¥c < k; < 1/9, the spectrum varies as K to be consistent with
Kraichnan-Phillips Theorem. He also extended the spectrum to the acoustic domain with the
inclusion of slight fluid compressibility [i.e., Eq. (25) is replaced by the Lighthill’s equation]
such that acoustic components are generated by the incompressible source terms, the Reynolds
stress field. This model has been widely used and was summarized in a recent text book by
Howe (1998) with a slight modification.

Unlike the Corcos wavevector-frequency spectrum, the Chase spectrum is not explicitly
separable between the frequency spectrum and the wavevector spectrum. By carefully examining

the Chase 1987 model according to the form arranged by Howe (1998), the approximated
expressions that are similar to Egs. (22) and (23) can be obtained, i.e.:

where (30)

Foneey (k2 K2) = Z (@6, 1U_)[@% + (@b, 1U ) PP A= k) + & + (bwS U, )* 1"

- k? Y § B S SN (/) A
X |C kb .. .. +C, 'S- ! <l (31)
el T k*+(bwd1U,)*
|k2—E:| % Ur 112 :
and where S =¢, +c, P +C}|122—122 T ,3=3u‘, e=(m/2k,L)", a,=0.12, u, is

the friction velocity, k 2 = k2 +k;, L,= length of the plate, Cy=0.1553, C7=0.0047, b=0.75,
ko=w/c, c;=2/3, and c=c3;=1/6.

The normalized Chase spectrum, f (I'cvl2 , ,’;32 ), is not only a function of the normalized

wavenumbers, (5,2,532), but also the Strouhal number, wd /U, . The Strouhal number
dependency becomes insignificant when wd /U >>1, or w4, /U_> 0.5. The corresponding form
of Eq. (31) for the earlier Chase model published in 1980 can be expressed as

(32)

19



where b,, =0.756 and b, =0.379. The acoustic domain of the wavenumber components are not

included in this earlier model. As will be seen in the later discussion, the low-wavenumber
spectrum predicted from this model is considerably lower than Chase’s 1987 spectrum.

Chase’s spectra has been approximately expressed in a way similar to Corcos’ wavevector-
frequency spectrum, i.e., @ (k,w)=¢,(w)U ./ w)? f (E, ,1?3 ) , and therefore the integrated sum

of f (I"cvl ,I"é ) with respect to wavevector (El ,Iﬂc'3 ) should be unity. Numerical evaluations

indicate that Egs. (31) and (32) satisfy this requirement. This is an attractive feature for
comparing the various spectral models (how the fluctuating energies are distributed to the
various wavenumber regions), as their sums of energies are identical. It is also interesting to
compare the normalized spectra derived from the Corcos and Chase-1987 models. The Chase
spectra are plotted by assuming &=1 inch, u, =0.032U_and wd/U_=10(or U_=15.5m/sat |

m from leading edge on a flat plate and at 1000 Hz). Fig. 2 shows the comparison between two
spectra plotted in linear scale over the wavevector plane. Both models show the fluctuating
energies are concentrated around the convective ridge and are virtually vanishing outside this
region. The only differences, in this case, between the two models are how the wavenumber
contents are distributed around the ridge: The Chase-1987 spectrum is more concentrated around
the ridge while Corcos’ spectrum is more spread out. This shows that, in the first order sense,
when both the spectrum and wavenumber are plotted in linear scale the wavenumber spectra
outside the convective ridge region are insignificant. The quantities of hydroacoustic interest (the
low-wavenumber regions) are obviously the second order effects of hydrodynamics.

When the spectral densities are plotted in logarithmic scale (see Fig. 3), the differences in the
distribution of energy in the various regions of the wavevector plane are now evident. The
Corcos spectrum spreads out more evenly to all regions and has a relatively lower convective
ridge but a higher spectral density throughout the wavevector plane including the low-
wavenumber region outside the ridge. The Chase spectrum is more concentrated around
convective ridge and spreads out less to other regions and has a relatively lower spectral density
throughout the wavevector plane including the low-wavenumber region. In a small region near
the origin of the wavevector plane, i.e., the w/c < k < 1/, the Chase spectrum diminishes
rapidly toward small values (proportional to " according to Kraichnan-Phillips Theorem) and
the spectral surface displays a tiny but sharp dent in the linear wavevector plane. This tiny
region, however, usually contains most of the bending wavenumbers of marine structures. The
TBL wall pressure components contained in this small region, a¥c < k < 1/9, are therefore the
most important source of structural excitations.

When this region is plotted in a logarithmic wavenumber scale (as is usually done in acoustics),
the wavenumber axis can be widened to several decades. It is useful to compare the normalized
spectra derived from the Corcos, Chase-1980, and Chase-1987 models all together (see Fig. 4) in
the commonly used log-log scales for both the spectral levels and wavenumbers. There are two
plots shown in the figure: one is the spectral levels as a function of k; as kj is set equal to zero,
the other is the spectral levels as a function of k3 as k) is set equal to zero. The differences in the
low-wavenumber regions of both k; and k3 are quite dramatic among the three models when they
are compared in the log-log scales. Most of the spectral plots that appear in the literature, similar
to Fig. 4, are concerned mainly with the k; variations at a fixed k3, and in most cases, k3=0. The
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k3 variations are also very important to correctly determine the response of a finite pressure
sensor to a TBL pressure field. Based on the data extracted from Smol’yakov and Tkachenko
(1991, Figs. 4 & 5), the wavenumber region where the Chase- 1987 model supported by
experimental data is also indicated in the figure.

From a modeling perspective, the Chase-1987 model is a hydroacoustically sensible model based
on real world experience in hydroacoustics and is consistent with the Kraichnan-Phillips
theorem. The Corcos model, on the other hand, was not focused on the secondary hydrodynamic
effect and may be considered as a hyrdoacoustically blind model. It should be also remarked that
Corcos (1964) did recognize that Kraichnan-Phillips theorem must be satisfied at zero
wavenumber. Considering the initial purpose of the correlation measurements was intended for
the study of the structure of turbulent flow, Corcos’s low wavenumber spectrum may be
negligibly small for that purpose. In fact, when the spectrum is displayed in linear scale, there is
no visible spectrum at zero wavenumber (see Fig. 2).
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Figure 2. Corcos’s and Chase’s Normalized Spectra Plotted in the Linear Spectral and
Wavenumber Scales
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2.5 Witting and Smol’yakov-Tkachenko Spectra

Although most of the leading theorists accept the so-called Kraichnan-Philips theorem and low-
wavenumber constraints, there is no experimental evidence to support it. The experimental data
of the low-wavenumber spectra tend to support the low-wavenumber-white spectrum with non-
vanishing spectral value at zero wavenumber. This stimulates the several empirical models
developed in the 1980’s and 1990’s. For examples: Efimtsov (1982), Witting (1986),
Smol’yakov and Tkachenko (1991), Chase (1987, 1991, 1993), and the Modified Corcos models
used by Ko and Schloemer (1989), Hwang (1998), Hambric and Hwang (2000), and a number of
others. Efimtsov’s model will not be discussed further here since it has been thoroughly
examined by Graham (1997) and found to provide insignificant improvement over the original
Corcos model.

2.5.1 Witting’s Spectrum

Based on the stochastic model of turbulent burst/sweep events, Witting (1986) provided one of
the earliest attempts to develop a wavenumber-white model. Witting considered each burst and
sweep an independent event and as a dipole that moves with the local mean flow. He derived a
Bemnoulli relationship that connects the wall fluctuating pressure from an individual event to the
fluctuating velocity. Based on the Fourier transforms of the event, he assumed a form of wall
pressure wavevector-frequency spectrum contributed by the fluctuating velocity at a d,
from the wall:

where < p? > is the mean square pressure, B is a dimensionless constant, and C is an arbitrary

constant. The wavenumber-frequency spectrum is then obtained by summing the above spectrum
over arange d, according to an assumed probability density function, i.e., Pr(d) o< 1/d . Finally,

the wavevector-frequency spectrum which is result of the integrated sum of the dipole
contributions, between the inner scale J,,, and outer scale J,,, , is shown below:

18.)¢; 12, =k,0.; 123 = k,0.;

min

where &=k + C|c?)—12,‘; Eoax = (O 10)E: & = (6,
k = K +k2;d=wb./U;A=CHall+2/(3C*)]IN(Spgy / Spin i
<p’>= mjdk, t[dkg u]dwcbp(k,(u) =0.0150°Uul.
This leads to a low-wavenumber white spectrum and the level can be made to fit the

experimental data with a proper choice of C (the value C=8 is recommended by Witting).
Witting’s formulation was, however, criticized as artificially introducing a volume dipole
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(Dowling, 1998), which is incompatible with the equations of motion (the incompressible
Lighthill equations).

Witting’s frequency spectrum is then the integrated sum of Eq. (33) over the wavevector plane:

(34)

and, the dimensionless form of Witting’s wavenumber spectrum is then

(35)
where 12, = (w/Uc)lE,J. , and 123 = (a)/UC)IEch.. As shown inFig. 5, Witting’s low-wavenumber

spectrum is about 15 dB lower than that of Corcos’s but the convective ridge level is much
higher, indicating a shift of spectral energy toward the convective ridge. Witting’s frequency
spectrum will be discussed later along with the other models.

2.5.2 Smol’yakov-Tkachenko Spectrum

Smol’yakov and Tkachenko (1991) discussed the inadequacy of the Corcos model for predicting
the low-wavenumber spectra. Based on their measurements of the longitudinal and lateral
correlations at a large range of spacing, e.g., §/4.=2.6 5 52.0;&,/6, =2.3 9.6, they argued
that the deviations from similarity with respect to w& /U, and w¢, /U increase as £/9.
increases. Therefore, they proposed to use frequency dependent generalized decay rates, a(w),
in conjunction with a non-rectangular product form of the coherence function:

where and m, is the ratio of the spanwise and

streamwise decay rates, i.e., m, = &,/ , (= 6.45). This coherence function is now an exponential

function of the square root of the geometric sum of streamwise and spanwise distances. The
frequency dependency of the generalized decay rate is more significant at small values of

wd, /U, while @(w) — «, at large values of wd./U,.
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IyK,(cy)cos(gy)dy = %c(cz +g%)™'* (Gradshteyn & Ryzhik, 1965; pages 482 and 749,
0

respectively), Smol’yakov-Tkachenko’s dimensionless Spectrum can be obtained in a rather

simple form as follows:

~ =~ a

fsar(kik;) =
2Tm

(4

(@ + -k +ky/m)? " (37)

Their ®p(k,w) at zero and convective wavenumbers, is then approximately,

When this is compared to the Corcos spectrum, Smol’yakov-Tkachenko’s zero wavenumber
spectrum is lower by the factor of z7&/2, which is about 8 dB lower when the value of @' is
assumed to be 0.1. Smol’yakov and Tkachenko considered this was still too high as compared to
the measured low-wavenumber spectra, so they introduced a correction factor, which has similar
low-wavenumber characteristics as Eq. (37 ) but will not yield an significant high wave number
components:

where m, = (1+ a’)/(sn-4+ 672) and n is a constant chosen to fit measured data. The final form
of the normalized wavevector-frequency spectrum is

(38)

If n is chosen to be near unity, the values of f(k,k,)and Af(l;:,,k3) at low-wavenumbers are
very close and the difference is therefore is a small value. For example, if n=1.005 as suggested
by Smol’yakov and Tkachenko, f(k,,k;) - Af (k,,k;) =0.005 f (k,,k;) , and the corrected

spectrum will be about 23 dB lower than the uncorrected spectrum. Due to the

function expressed as an exponential function of the square root of the geometric sum of
streamwise and spanwise separations, Smol’yakov and Tkachenko’s k3-spectrum is now similar
to that of Chase’s showing an increase in value with wavenumber rather than a slight decrease in
value with wavenumber in the Corcos’ and Witting’s spectra.

25



Normalized K-Spectrum Normalized K3-Spectrum, ki=kc and k1=0

8 .10 .

: @

: D 20| =mmmmmmmm e m e o R

R :

£ i, -

340 £ )

) 540 |
n P -

; E B0 | coceammeomacmemenameo=v=eT -7 B = ‘S&T, k:sk?
. — Corcos, k1=kc

Witting, k1=0
-=- S&T k1=0
‘ 1 === Corcos. b, o4 |

Figure 5. Normalized Corcos’s, Witting’s and Smol’yakov-Tkachenko’s Spectra Displayed
in Logarithmic Spectra as a Function of Logarithmic Wavenumbers.

2.6 Modifications of the Corcos Model

As mentioned earlier, the Corcos model of cross spectral density function is an approximate
model derived from the results of two-point correlation measurements. This spectrum is
applicable primarily in the region that is dominated by the convected pressure field. In the low
wavenumber region of vibroacoustic interest, Corcos’s wavenumber-frequency spectrum has
been shown to be inaccurate. Because Corcos’ cross-spectral density function was derived from
experimental data with the appeal of simplicity, the reason for its inaccuracy at low
wavenumbers will be examined first, and then the possible remedial modifications to improve its
accuracy will be investigated.

From the definition of Fourner transform, Eq. (21), the wavevector-frequency spectrum for Eq.
(18) at zero streamwise and spanwise wavenumber is equal to ¢, (@) times the product of two
integrals; the first is the integration of A(w¢, /U, )exp(iw& /U, )/ 27z with respect to &, and the
second is the integration of B(w¢, /U, )/ 2z with respect to &. The integration limits for both

are from - to oo. It is noted that the factor, exp(iwf,/U() , is required for the streamwise cross

spectrum to account for the effect of the mean convection of the flow. No such factor is required
for the spanwise cross spectrum. Therefore, if Eq. (18) is determined by a pairs of measuring
sensors mounted in the convected frame of reference, the factor exp (iw& /U, ) in the first
integrand must be dropped, because there would be no mean convection effect on the sensors. In
other words, the streamwise cross-spectrum measured by the moving sensors would be similar to

the spanwise cross-spectrum measured by pairs of stationary sensors except for the differences in
decay rates. In this case, the calculated spectrum will peak at zero wavenumber, which is

proportional to the product of the areas under A(w(¢,/U,) B(w{, /U ) /(27:)2 and is equal to
9,(@)U./w) (7*aq0;) =9, (@) £,/ * where £ ¢, is the correlation area. Therefore, the net
force spectrum per unit area exerted by a TBL on a rigid plate is proportional to the correlation
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area only when the plate is convected with the flow. When the measuring sensors are mounted in
the fixed frame of reference, the spectral peak is shifted to the convective wavenumber due to the

factorexp(iwé,/U() . The convective ridge spectrum is then equal to ¢@,(w)¢ ¢,/ 7*. However,
the frequency spectrum ¢,(w) observed in the convected frame could be much less, because in a

completely frozen flow there is no time-varying signature which can be observed in the
convected frame of reference (Fisher and Davies, 1963).

The zero wavenumber spectrum observed in a fixed frame of reference, on the other hand, is
proportional to the integration of A(w¢,/ Uc)cos(wé’,/U()/ 27 with respect to &;. The function A

is symmetric in w,/U. . Fig. 6 shows the integrand, A(w¢,/U.,) cos(w-f,/U(), plotted as a
function of ¢, /U, (the red curve). The zero wavenumber spectrum is now equal to the
integrated sum of A(w¢, / Ur)cos(wf,/U()/ 27 with respect to & times 9, (W)U, /w) (7 a,).
Noting that A(w¢,/U.) =exp(—a,a)|§,|/U() is a steady decaying function and cos(w&/U, ) is a

rapidly oscillating function of &, the resulting integral of the product is a small value which is
proportional to the decay rate. The non-zero spectrum at k;=0 is contributed by the residue of
incomplete sinusoidal cancellation due to the spatial decay of coherence; the smaller the decay
rate the smaller the spectrum at k;=0. The net value of the integrated sum of

A(w¢, /Ur)cos(wf,/Ur)IZﬂ is shown to be equal to (U, /w)e, /[7(1+ a,z)] =U. /o, I
since o1<<1. The ratio between the integrated values with and without the oscillating term is
then approximately equal to [(U,./w)e, /7 ) (U, / w)/(rc,) ]=a',2. Since @, =0.1, the effect of
the oscillating term thus reduces the streamwise integral to about 1%. Therefore the zero

wavenumber spectrum is actually very small, but is still too large in aero and hydro acoustics.
The spectrum of the net force exerted on a stationary rigid plate will be proportional to the plate

area times @, (@) ¢,¢,/ 7’ in contrast to that times @, (w)¢,¢,/7* when the plate is convected

with the flow. The factor ¢ (the ratio of the zero wavenumber and convective-wavenumber

spectra) is often incorrectly ignored in predicting the TBL exerted force on a stationary finite
plate when the correlation area is used.

Corcos’s zero wavenumber level is about one percent of the convective ridge level. This may be
negligibly small from a fluid dynamics point of view. However, a problem arises when it is used
as the forcing function for a large structure. Because a large structure acts as an enormous low-
pass wavenumber filter and demands a more accurate low-wavenumber spectrum. This accuracy
is inherently impossible to obtain from Corcos’ simple model, which is based on correlation
measurements dominated by the pressure fluctuations convected with the flow. A more accurate
low-wavenumber spectrum might be obtained if one could actually conduct the space-time
correlation according Eq. (12). The Fourier transform of this function would ensure that its
wavenumber and frequency contents are orthogonal under the area and time averaging process.
Since a direct measurement of the space-time correlation function is not possible, the exact value
of the low-wavenumber spectrum is not known. We can only estimate this spectrum using a
mathematical model based on the response of a mechanical system such as a flat plate or an array
of pressure sensors; both systems respond instantaneously to the space averaged TBL forces at
any instance of time. From reported measurements by Martin and Leehey (1977), Farabee and
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Geib (1976), and others, the Corcos’s low wavenumber spectrum must be reduced in the order of
20 dB. Some modifications of the Corcos-type spectrum for predicting the low-wavenumber
spectra to be more inline with the measured data are discussed as follows.

— x1 correlation x1 comulation
08 — x3 corralation 08 —— «x1 cross-spectrum
06 06
04 04
02 0.2
0 0
02 02
014 04
06 06
08 08
% w40 o 0 20 40 60 B B — 20 0 20 40 60 &
omega“distance/Uc omega“distance/Uc
(a) Streamwise and spanwise correlations (b) Streamwise cross-spectrum (red curve)

Figure 6. Corcos’s correlation functions and the streamwise Cross-Spectrum
2.6.1 Ko and Schloemer Spectrum

Since Corcos’s low wavenumber spectrum is about 20 dB below the convective ridge and is
about 20 dB too high, the rule of dumb is that the correct low wavenumber spectrum must be
about 40 dB below the convective ridge. One simple way to accomplish this is by reducing the
value of «; from its typical value of 0.1 to 0.01 (Ko and Schloemer, 1992) while keeping o
unchanged. According to Eq. (24), this will reduce the Corcos’s zero wavenumber spectrum by
10 dB while increasing the convective ridge by 10 dB, and consequently the zero wavenumber
spectrum is about 40 dB below the convective ridge. Ko and Schloemer’s simple modification of
the Corcos spectrum was aiming at an acceptable low wavenumber spectrum, since the accuracy
of the high wavenumber spectrum was not important in their analysis. Comparing convective
ridge levels shown in Fig. 4, the Chase spectrum is about 5 dB higher than the Corcos spectrum,
and the Ko and Schloemer’s modified spectrum is another 5 dB higher still. Using this modified
wavenumber spectrum in conjunction with a simple Strouhal scale independent frequency

spectrum, @, (w) = p*ulw™, Ko and Schloemer indicated that their calculations of the flow noise
reduction for a planar array of hydrophones were satisfactory.

2.6.2 Willmarth and Roos Spectrum

At the time the Corcos model was proposed, correlation of wall pressure for very small spatial
separation, say lfl |< 0.76. , had not been measured due to the limitation of finite size pressure

sensors. Corcos’s similarity of the cross-spectral density function assumed this missing
information. In wavenumber-frequency domain analysis, Willmarth and Roos [1965] attempted
to recover the TBL power spectrum that would be measured by a point transducer from
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correcting the data measured by a finite size transducer. They believed that the missing
information at small spatial separation might be crucial for accurately determining the correction
factor, especially at low frequencies. Accordingly, Corcos’s coherence functions are modified as
shown below to improve the fit between prediction and measured data:

A)=exp(-a4 &)+ |E | exp(-bar ) (39a)

B(&) =0.155exp(-0.092| |) + &, exp(-0.789|, b b
+0.145exp(-2.916|E ) + 1.4140, |&,|exp(-bya, &) (

where f, =wé&/U.,, §~3=a)§3/U(, =0.1145, b;=21.83, &5=0.7, and b3=5.71. The last term on the

right-hand-side of Egs. (39a) and (39b) were chosen to make A’(0) and B’(0) zero while the
corresponding terms of Corcos’s original function have negative slopes at the origin. This is
likely the first time the Corcos cross-spectrum was modified. The decay constants in the added
terms increase the values of both coherences, A and B. Eq. (39a) predicted streamwise coherence
agrees well with the measured data and that predicted by the original Corcos function, except a

small notable change when fl <1. The spanwise coherence shown by Eq. (39b), agrees well with

measured data, while the original Corcos function predicts a considerably lower value when f,
>2 (Willmarth and Roos, 1965, Figs. 1 and 2; Farabee, 1986, Fig. 5.11) .

In order to obtain a similar normalized wavenumber spectrum shown in Eq. (23), Willmarth and
Roos’s normalized spectrum is denoted as

fW&R(El ’Ea )= .fl(lzl )fg(EJ ) (40)

where the subscript W&R indicates that the spectrum is the result of Fourier transform of the
Willmarth and Roos coherence functions. Consequently,

(41)

and

(42)

29



The last terms on the right-hand-side of the above two equations are the Fourier transforms of the
last terms on the right-hand-side of Egs. (39a) and (39b). These terms were intended by
Willmarth and Roos to make the coherence functions have zero slope at the origin in order to
reduce the undesirable high wavenumber components. The normalized spectrum of Egs. (41) and
(42) will be called the Willmarth-Roos spectra. As shown in Fig. 7, the differences between this
spectrum and that of Corcos’ are not particular significant except at the convective ridge region,
the k3-variations in particular. The main difference is that Willmarth-Roos’s spanwise
wavenumber spectra near the convective ridge is more concentrated (with a hump contributed by
the first term in Eq. (39b)) at k3=0, while Corcos’s spectrum spreads out more evenly. This
causes Willmarth-Roos spectrum to have a higher convective ridge. Similar spectral curves of
the Chase-87 spectrum are also shown in the figure, which shows a significant departure from
Corcos’s and Willmarth-Roos’s spectra especially in the low wavenumber region. Incidentally,
Willmarth-Roos’s convective ridge matches perfectly with that of Chase-87. This may justify the
modification by Willmarth-Roos to improve the prediction of sensor attenuation near the
convective ridge. However, Willmarth-Roos’s low k3 spectrum (when k,=0) shows a small hump
at k3=0 instead of a dip that is shown in the Chase’s physics based spectrum. Therefore, the
modification of the spanwise coherence, Eq. (39b), is considered to be unnecessary for the
purpose of improving the low wavenumber spectrum of Corcos. Corcos’s original form, Eq. (20)
should be used instead.

The last terms of Eq. (39a) and (39b) produce a negative spectrum when

where b, and by, are the exponential decay factors. These terms reduce the wavenumber

spectra produced by the respective preceding terms. For example, the first term of Eq. (39a) is
the Corcos approximated streamwise coherence function, which is responsible for the unwanted
high low wavenumber spectrum. The second term may help to reduce it. Since Willmarth and
Roos’s b, and by, are equal to 2 and 4, respectively, the negative spectra will occur when

12, <-1, IZ, >2 and |E3| >4. These wavenumbers are outside the low wavenumber region of

interest. From the previous comparison between Corocs and Chase spectra (see Figs 4), it is
desirable to reduce Corcos spectrum in the entire wavevector plane outside the convective ridge.
This can be done by properly choosing b, and bs. Fig. 8 shows the normalized Willmarth-Roos
spectra at the various value of b, while b3 is kept to be equal to 2. It is shown that when b, is
reduced to 0.5, the Willmarth-Roos’s low-wavenumber spectrum will be about 20 dB lower than
that of the Corcos spectrum. Therefore, it is remarkable that the modification of the Corcos

streamwise coherence function by adding the term, &, |y|exp(-b, ||, where ¥ = wé, /U, as it

was done by Willmarth and Roos can reduce the low-wavenumber spectrum to any desired level
by adjusting the value of b,.
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Figure 8. Normalized Corcos and Willmarth-Roos Spectra with Various Values of b,
2.6.3 Modified Corcos Spectrum

The Modified Corcos cross-spectrum given in this section was suggested by Elswick (1983) of
the Naval Undersea Warfare Center, Newport, RI (formerly the Naval Undersea System Center,
New London, CT). Some successful applications of this spectrum were reported by Ko (1991),
Hwang (1998) and Hambric and Hwang(2000). Since the information on how this model evolved
was not known to the authors, a discussion follows on the two sources that may lead to the
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Modified Corcos spectrum shown in Eq. (43): the first is Willmarth and Roos’s model mentioned
in the previous section, the second is Chase’s (1987) approximated correlation functions.

In Willmarth-Roos’s modified cross-spectrum if the constants b; and b3 are chosen to be 1 and 2
respectively, the last two terms of Egs. (39a) and (39b) will produce negative values in the

wavenumber ranges IZ, <0.9 and |E3| >1.4. In Fig. 8, the normalized Willmarth-Roos spectrum

with b3=2 at various values of b, is shown. When b, is reduced to 0.5, the Willmarth-Roos’s low
wavenumber spectrum may be reduced to a desirable level, but there are two irregular kinks on
its spectral curve just outside the convective ridge. Therefore, a desirable choice of b, may be

b =1. This leads to a simple form of the modified Corcos cross-spectral density function, which
is identical to that suggested by Elswick (1983), i.e.,

I, w)=¢,(w)(l+a|w /U,

)exp(—a, |lwé, 10U,

) exp(—af3 |cocf3 /Uc|)exp (iwé/U,)
(43)

where the original Corcos spanwise correlation function is used, and the streamwise correlation
function is multiplied by the factor, 1+ a1|w&/U,|. This means that the original streamwise
correlation is increased proportional to a1|wé/U,|. Since a; ~ 1/10, the increase is small at small
values of @&, /U, . However, the increase becomes significant when @&, /U _> 10. Like the

Chase-1980 version of the cross-spectral density function, this cross-spectrum is, as expected,
significantly different from the typical Corcos type cross spectra obtained from fitting the data
from two-point correlation measurements. The increase of correlation thus shifts the spectral
contents toward the convective ridge while reducing the low wavenumber spectrum.

As mentioned earlier, there is no corresponding closed form solution of the cross-spectral density
function for Chase’s 1987 wavevector-frequency spectrum. However, Chase pointed out that in
the Strouhal scale independent range, where wd/U_>>1, the streamwise and spanwise

correlations may be approximated by

and

The corresponding normalized non-dimensional spectra are then

and
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In the low wavenumber and convective ridge limits, the above wavenumber-frequency spectrum
approaches the following values:

2 2u’+rru(l+u’))
(1+r,)n2[ A+r)A+u*)? )
22+r)

ul+r)irt’

With the values 4 =0.176 and r. =0.389 recommended by Chase, the zero wavenumber

spectrum shown above is about the same as Corcos’s spectrum. This approximated form of the
correlation function is therefore not capable of generating the desired low wavenumber
spectrum.

However, when the value 7 is assumed zero, we have

and

This streamwise correlation will have the same form as that of the modified Corcos model.
However, in this case, the spanwise correlation is also similarly modified. Therefore, the
Modified Corcos cross-spectrum is somewhat inline with Chase’s (1987) approximation.

The Modified Corcos wavevector-frequency spectrum is then the Fourier transform of Eq. (43),
which is

2
®, b= 0,0 L 2a o b @
@ 7t|:a12+(l—kl)2:| ”[as + 3:|

and the approximate spectrum at zero wavenumber spectrum is

2
®, (k) = 4,(w) ( j {;cs } as (k. k) =0 , (45)

3

which is lower than that of the Corcos spectrum by the factor of 2a} (= 0.02 =-17dB). The
spectrum at the convective ridge, on the other hand, is doubled (+3 dB). This yields a zero
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wavenumber spectrum which is about 40 dB below the convective ridge. The above modification
does not change the integrated value of the wavenumber spectrum, since the doubling of the
values at convective ridge is compensated by the reduction of the wavenumber contents outside
the ridge. The spectrum of the net force exerted on a rigid plate calculated from the Modified

Corcos spectrum will now be proportional to the plate area times ¢, (w)2¢*¢,€,/7* in contrast to

that times ¢, (w)at,£,/ 7* when the original Corcos spectrum is used. The comparison of this
spectrum to the other spectra will be shown in the latter sections.

2.7 Pressure Spectrum Caused by Viscous Shear Stresses

In viscous flows, the Navier-Strokes equations may be linearized in the near wall region and the
equations of motion can be separated into irrotational, v, , and rotational, v,, components (Morse

and Ingard, 1968):

,0ﬂ =-Vp and p% =—u curl curl v,, respectively.
t

ot

On a rigid surface S with normal n, in order to satisfy the no slip wall condition, v,+v, =0, the
pressure and shear stress must satisfy the following boundary condition,

onS. (46)

The inviscid solution, Eq. (27), must now include the wall shear stress contributions (Dowling,
1998):

(47)

In the case of an infinite plane surface, G is the half space Green function, Eq. (47) can be
simplified to

(48)

where @ must be summed over two directions in the plane, 1 and 3. Similar to the way Eq. (29)
was obtained, the wavevector-frequency transform of the surface pressure, Ps(k,w) , becomes

(49)
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where G, (k,w) is the Fourier transform of the wall shear stresses at y,=0. Eq. (49) indicates that
including viscous shear stresses could lead to a non zero spectrum at zero wavenumber.
Although not free from controversy (Howe, 1992; Dowling, 1998), the estimated non zero shear
stress near zero wavenumber by Kronauer, Hollis, Bullock, and Lai (1997) may substantiate this
assumption.

Chase (1991) showed how the wall pressures and shear stresses can be related to the fluctuating
Reynolds stresses, the main sources of fluctuating pressures. He assumed that &, (k,@) need not

vanish at zero wavenumber as do the wall pressures in inviscid flows. More specifically in the
region, a/c < k < 1/6, the low wavenumber pressure amplitude is equal to that of the shear stress
except they are 90° out of phase. A semi-empirical model for the wavevector-frequency spectrum
of turbulent wall shear stress (which is equal to the low wavenumber pressure in amplitude) was
constructed (Chase, 1993) based on the spectra of streamwise velocity in the sublayer of
turbulent pipe flow measured by Morrison et al. (1971). This empirical shear stress spectrum at
near zero wavenumber, S(0,w), is shown below:

where w, =wv/ul, a, = Su,/v. Another set of near zero wavenumber spectra available in the

literature was the pressure spectra published by Sevik (1986). As shown in Fig. 9, Sevik’s data
collapse quite well with Chase’s empirical curve although Sevik’s data (the underwater portion
of the data) are only available in a rather small range of Strouhal numbers.

TBL K=0 SPECTRA: Chase and Sevik cata

Chase data

® Sevik Data

-70

log[®,(0,0,0)U, /7267 |
@

-75

10 M, /U" 10

Figure 9. Chase’s Empirical Zero Wavenumber Spectrum and Sevik’s Data, the
Normalized Spectrum in dB is lOlog[CDP(O,O,a))U_, /2'55.3]
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2.8 A Combined Chase Model

Chase’s zero wavenumber spectrum discussed above may be assumed to be representative of the
wavenumber independent spectrum in the low wavenumber region, which may be normalized by

g, (@)U, / w)? and then added to Eq. (31) to form the Combined Chase spectrum, i.e.,

(1)

By so doing, one assumes that the spectra caused by shear stresses, f, are wavenumber
independent in the low-wavenumber range, and a white pressure spectrum which equals f; is
added to the Chase’s 1987 spectrum. Since the value of f; is usually at least three orders of
magnitude smaller than that of the convective ridge, the effect by adding f; (in the low-

wavenumber region) on the integrated sum of the normalized spectrum over the wavevector
plane (to be unity) should be insignificant. From here on, this spectrum will be called the
Combined Chase spectrum. Fig. 10 shows the comparison between Chase’s 1987 and the
Combined Chase spectrum at a small Strouhal number, say, wd./U_=0.5. The two spectra show

differences only in the low wavenumber region; the region where (I‘c-,2 + IZ: )% <0.1.Itis evident

that by adding the low wavenumber white contents contributed by the shear stresses, the sharp
dent at zero wavenumber of the Chase 1987 spectrum at low Strouhal number disappears. The
Combined Chase spectrum is now smoother (with shallower dent). The white spectrum,
however, is not realizable in the linear wavevector plane. The white spectrum can be seen only
when it is broadened in logarithmic wavenumber scale. Fig. 11 shows the same comparison
between the Corcos, Chase-1987, and the Combined Chase spectra as a function of k; observed
at k3=0. The Combined Chase spectrum now shows a low wavenumber white spectrum (the red
curve) as it is plotted in the logarithmic wavenumber scale. This is for the case of low Strouhal

number, wd, /U_=0.5, where adding the contribution by the viscous shear stresses significantly
changes the low wavenumber spectrum.
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Figure 10. Normalized Chase 1987 and Combined Chase spectra, wd, /U_=0.5
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Figure 11. Normalized Corcos, Chase-87, and Combined Chase (Labeled here as Chase-
White in Red) Spectra in Logarithmic Wavenumber Scale (@d. /U_=0.5)
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Due to the more significant acoustic contributions at higher frequencies, the shear stress
contributions are no longer significant at higher Strouhal numbers. This is shown in Fig. 12
(calculated with U_ =15m/s and the length of the plate, L,=5 m) where the Combined Chase

and the Chase 1987 spectra are compared for various Strouhal numbers, ranging from 0.06 to 18.
Shear stress contributions become less significant when Strouhal numbers are near or larger than
6 and become no effect at all when the Strouhal number is 18. This point may be further

illustrated by Fig. 13, which shows the near zero wavenumber spectra as a function of wd, /U _

predicted from Chase-1987 acoustic and Chase-1993 shear stress models. Also shown in the
figure is the Combined Chase near zero wavenumber spectrum which is the sum of the two

spectra. The near zero wavenumber spectra, ¢ (0,0,w)U.. / 135.3, are expressed in the same way

as that of Blake (1986), to provide a possible direct comparison with the other wind tunnel data.
The low-wavenumber wind tunnel data shown are the least square fitted curves by Martin (1976)
and Farabee-Geib (1976) and are acquired here from Blake (1986, Fig. 8-28). It is noted that the
wind tunnel measurements were taken at the wavenumber region considerably deviated from
near zero wavenumber region (see Fig. 14). The differences in the spectral levels in the two
region shown in Fig. 14 may explain why the wind tunnel data shown in Fig. 13 are considerably
higher than the near zero wavenumber spectra contributed by the wall shear stresses.

Normakzed Chase-87 k1-Spectrum, k3=0

— $=08
0 — s=18
--- S=6
— S:18

cbum, dB

10"

K1/&C K1/KC

(a) Chase 1987 Spectrum (b) Combined Chase Spectrum

Figure 12. Normalized Chase-87 and the Combined Chase spectra as a function of S=d. /U,

It is shown in Fig. 13 that when the flow (underwater) conditions are, U_=15 m/s and &=0.05 m
(at 5 m from leading edge), the wall shear stress is the predominant contributor of the near zero
wavenumber spectra when wd, /U _ <10, and when wd, /U_>10, Chase’s suggested acoustic
contribution will be the dominant contributor. It also shows that at a different flow condition,
where U_=10 m/s and =0.02 m (at 1 m from leading edge), the change of the predominant
contributor occurs when wd, /U_=7.5 instead of wd, /U_=10 in the previous case. Unlike
Corcos’s spectrum where one normalized spectrum, Eq. (23), is universally applied to all
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frequencies, both the normalized Chase 1987 and the Combined Chase spectra are speed and
frequency dependent.
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Fig. 13 Near zero wavenumber spectra predicted from Chase-1987 acoustic,
Chase-1993 shear stress, and Combined Chase models and the Low-wavenumber
Wind Tunnel Data by Martin and Farabee-Geib

2.9 Comparison of the Various Spectral Models

Fig. 14 shows the comparison of the normalized k;-spectra computed from the models of Corcos
(1963), Witting (1986), Smol’ yakov-Tkachenko (1991), Modified Corcos, Chase (1987) and the
current Combined Chase. It shows that the Witting-86, Modified Corcos, Chase-87 and the

Combined Chase spectra are clustered together within a couple of dB for k;>0.1 k. at wd, /U_=1

and for the nearly entire subsonic range when wd, /U_=10. Noting that Chase-87 spectrum is

empirically fitted with data in these ranges, this may be reason why the Modified Corcos
spectrum has been used successfully by many investigators such as Ko and Schloemer (1991),
Hambric and Hwang (2000) and others. However, the Modified Corcos as well as the Witting
spectra are considerably higher in level than both the Chase-87 and the Combined Chase spectra
in the supersonic region and at low subsonic wavenumbers as well when Strouhal numbers are
low. Although Witting-86 and the Modified Corcos spectra collapse nicely within a couple of dB
at all wavenumbers except near the convective ridge, they cannot justifiably be used in the
supersonic and low subsonic wavenumbers regions. At the convective ridge, the Witting
spectrum is unusually sharp and high (see Figs. 5 and 14) and may cause errors when the
contributions to the excitation are dominated by the convective ridge. As mentioned earlier, the
Corcos-63 spectrum is about 20 dB too high at low wavenumbers. Although the Smol’yakov and
Tkachenko spectrum may be nearly correct in the supersonic range, at nearly all subconvective
wavenumbers it falls about 15 dB too low.

At this point, the Combined Chase spectrum is the most empirically justifiable model.

Unfortunately, it is not possible to obtain a corresponding cross-spectral density function in a
closed form solution, as noted by Chase (1987), via inverse Fourier transformation. Despite the
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simplicity in the mathematical descriptions for both the cross-spectral density function and the
wavevector-frequency spectrum, the Modified Corcos spectrum agrees remarkably well with the
Combined Chase spectra, except in the supersonic region and at low subsonic wavenumbers
when Strouhal numbers are low. The possible impact of this deficiency will be evalued in
Section 3. Although Witting also agrees well with the Combined Chase spectrum, Witting
spectrum does not have a simple descriptive form [see Eq. (35)], and does have the
corresponding cross-spectrum necessary for use with numerical models. For subsonic low
wavenumber excitations in finite-element models of structures, it may be plausible to use the
Modified Corcos cross-spectrum to approximately represent the cross-spectrum for the
Combined Chase wavevector-frequency spectrum.

Nommatzed k1-Spectum, k3=0 Normahzed k1.Spectum k3=0

K1Ke K/ke

wo, /U_ =1 wd. /U_=10
Figure 14. Comparison of the Various Models at Two Strouhal Numbers

As indicated in Figure 14, three regions of wavenumbers exist where data are available for
comparing with the spectral models. Near the zero wavenumber region, Sevik’s data agrees with
Chase’s wall shear stress caused pressure, which is the dominant contributor of the Combined

Chase spectrum when wd, /U_<10. However, the Combined Chase near zero wavenumber
spectrum in the neighborhood of @wd,/U_=10 or larger will be predominantly contributed by the
acoustic components (see Fig. 13). Therefore, there is no experimental data to support the
Combined Chase spectrum when wd, /U_>10. In a subconvective range, where 0.1<k, /k_<0.25,
is the region where most low wavenumber spectra were measured (e.g., Martin and Leehey,
1977; Farabee and Geib, 1976). The Combined Chase, Modified Corcos and Witting spectra
agreed well with data in this region. In the higher wavenumber subconvective range, where
0.3<k,/k_<0.75, the Modified Corcos spectrum is confirmed (so are the Combined Chase and
Witting spectra since they collapse) by an analysis by Hambric and Hwang (2000) using the

experimental data obtained from a Purdue University wind tunnel by Han, Bernhard, and
Mongeau (1999). However, in the crucial wavenumber region of underwater interest where

O<k, /k, <0.1, there is no experimental data available to confirm any of the models.

It is noted that the normalized empirical low wavenumber spectra such as the Chase’s
supersonic, near zero wavenumber shear stress spectra, and the zero wavenumber Sevik data,
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f(k, =0,k, =0), discussed above have been normalized using the Chase’s point frequency

spectrum shown in Eq. (30). In order to recover the actual values of these wavenumber-
frequency spectra, Eq. (30) must be used. On the other hand, both the normalized spectra,

f(k, ,k; ) , of the Corcos and the Modified Corcos models are independent of what value of the

point frequency spectra are used to normalize them (see Egs. 23 and 44). Since the normalized
wavenumber spectra are merely showing the relative distribution in wavenumbers of the point

frequency spectrum, which sum over the normalized wavevector plane (IZ, ,IZ, ) is always unity.

We, therefore, assume that all of the normalized wavenumber spectra established above can be
applied in the same way as those of the Corcos and the Modified Corcos models, i.e.,

O, (k,w)= (I)p(a))(Uc/a))2 f(k, k), where the value of ¢,(w) can be determined by an
independent experiment or calculated from a predictive model.

3.0 Point Frequency Spectrum

The frequency density function of the wall pressure depends strongly on the flow parameters. Its
value is usually determined according to experimental curves plotted according to certain scaling
laws (Blake, 1986; Farabee and Casarella, 1991; Keith, Hurdis, and Abraham, 1992; Goody,
2002). For example, the low frequency spectrum scales well with outer variables such as the
boundary layer thickness, while the high frequency spectrum scales better with inner variables
such as the wall shear stresses. All scaling parameters depend on the Reynolds number (in terms
of distance from the leading edge, boundary layer thickness, or momentum thickness) of the
flow. It is quite cumbersome to determine the point-to-point variations of the pressure spectra on
the surface of a vehicle using the non-dimensional curves. In the past (Chase,1980; Ko and
Schloemer, 1989), the following simple approximation had been used,

(52)

where a, is a proportionality constant which may vary from 1 to 5. This formula, however,
provides a satisfactory approximation only when the Strouhal number (in terms of displacement
thickness) falls approximately between Y2 and 5. Two frequency spectral models have been
discussed: one is Chase’s model shown in Eq. (30) and the other is Witting’s model shown in Eq.
(34).

In an investigation of the vibration response of spacecraft shrouds to in-flight fluctuating
pressures, Cockburn and Robertson (1974) utilized the following semi-empirical equation for the
frequency spectrum of wall pressures beneath a homogeneous and attached boundary layer at
transonic and supersonic speeds:
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where q_ is the local free stream dynamic pressure, P? = [0.006/(1+0.14M?*)g_J* is the mean
square fluctuating pressure, M is the local Mach number, and f; is the characteristic frequency:

f,=0.346U_/6 . The Cockburn and Robertson frequency spectrum represents the frequency

distribution of the mean square pressure as a function of the characteristic frequency, which is
characterized by only the outer variables, U_ and &.

Smol’yakov and Tkachenko (1991) also provided their empirical frequency spectrum expressed
in terms of both inner and outer variables:

(54)

where, in the case on a flat plate, the wall shear stress and boundary thickness can calculated
1’5

, 0=037T " , Lis the linear length from

the leading edge, and in water, &, = §/8.

v

approximately by 7, =0.029pU2

Recently, Smol’yakov (2000), developed a simple method for calculating the TBL wall pressure
spectra based on the source mechanisms that generate wavenumber spectrum caused by the
interactions between turbulence and the mean shear, i.e.,

(35)

This is a special case of Eq (29), since here the spatial Fourier transform is only applied to the
velocity fluctuation normal to the wall in the plane y=constant. U is the average velocity in the
boundary layer at a distance y from the wall. From this, the wavenumber-frequency transform of
the wall pressure is consequently,

(56)

where G(k,.k;,m,y) = f(y)k? + B?k})exp{-atl|k| +|k|(B - D]} is a generalized wavenumber-

frequency function of the pressure source function located at a distance y from the wall. This
source function is therefore characterized by: (1) an asymmetry coefficient, £ (= 2)a

dimensionless coefficient, & (= 1/x), that determines the rate of decrease of the spectrum; (3)
the eddy length scale, ¢ = (u,uz)”2 /(dU /dy) , where (u,u2> is the correlation of the longitudinal
and the transverse components of the turbulent velocity fluctuations at a distance y from the wall;
and (4) a function of position, f(y) = &¥¢’, where k = (u,u2 )"2 is the characteristic value of the

turbulent velocity fluctuations. For the mean shear term, two separate expressions are used in the
inner and outer regions of the boundary layer. In the inner wall region (the constant stress

42



region): dU /dy = ul /(v + €), where ¢ is the eddy viscosity. In the outer region which occupies

85-87% of the boundary layer thickness: dU /dy = (ul/ €)exp[~2.5(y/J)*], where the eddy
viscosity can be assumed to be a constant value.

With the generalized wavenumber-frequency source function and the mean shear terms given
above, Smol’yakov computed the point frequency spectrum by evaluating the integral, from y=0
to y — o, and over the entire wavevector plane, i.e.,

He also analyzed a diverse group of data reported in the literature with inner or outer variable
scaling. As expected, outer variable scaled data collapse together at low frequencies but scattered

at higher frequencies according to the increase of Reynolds number, R,(=U_6/v), where 6 is

the momentum thickness. This observation was confirmed by his computed spectra. The inner
variable scaled data are also collapsed at high frequencies, as expected. He further observed that
in the intermediate frequencies, the peaks of the spectral curves are a smooth function of R, .

Smol’yakov then argued for the requirement of different scaling for different frequencies and
Reynolds numbers. Four distinctive characteristic frequency ranges, determined by
dimensionless frequency, @ = wVv/u,, are distinguished for R,>1000:

¢, () =1.49%107 Ry™@" (1 - 0.11TR;“@" * ) [l I(z )]
when ¥ < @,

@, () =2.750"""{1 - 0.82exp[-0.5(@/ @, - )] } [l /(T,v)] (58)
when @ < @<0.2

@, (@)= (38.9¢ %7 +18.6¢7* +0.31e™'**){1 - 0.82exp[-0.5U(@/ @, — )]} [ul /(z}))]
when @ > 0.2

where the peak frequency occurs when @ = @, = 49.35R,** . In the low frequency region,
@ < @, and the pressure spectrum is proprtional to @’ . In the mid frequency region, where @ is
near @,, is the peak region. In the “universal” range, @, < @<0.2,and ¢, (@) << ™. In this

range, however, Smol’yakov’s expression shows the spectrum to be proportional to @™ "' to
account for the non perfect frozen pattern of the flow and the dependency of U, on wavenumber.

In the high frequency region, @> 0.2, ¢,(w) varies from e ™" to ec ™.

Most recently, Goody (2002) presents an empirical model based on the experimental surface
pressure spectra measured by seven research groups. His empirical model is based on the
ratio (Ry) of the outer boundary layer time scale (§/U_) to the inner boundary layer time
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scale (v/ul ). The effect of Reynolds number is incorporated through the time scale ratio. The
final form of this empirical model is

3T (59)

where C, = LI1R*" | R, = ( and where C; is the friction coefficient.

This model compares well with experimental data over a large range of Reynolds numbers,
1400< R, <23400. Goody indicated that this model can be confidently extrapolated to higher

Reynolds number of flows since the scaling behavior of the model strictly follows to the high
frequency Reynolds number independent inner-layer scaling.

At this point, it is helpful to compare how the various frequency spectral models differ in the
prediction of the wall pressure. In Fig. 15 (a), the point spectrum is predicted based on the

following assumptions: U_ =21.34 m/ s, L (from the leading edge)=0.45 m. This is the flow
speed and one of the flush phone location in the Haddle and Skudrzyk (1969) experiments. The
wall shear stress and boundary thickness are calculated approximately by the flat plate formula:

v

/5 /5
r“_:0.029pUi[U LJ \ (5=0.37r( £ ,0,=0/8 and 6=0.15.

In Fig. 15 (b), the point spectrum is predicted based on a slower speed, U_ =13 m/s, and a point

much further down stream, L 9.45 m. Due to close proximity to the leading edge where the
boundary layer is thinner, the peak frequency in Fig. 15(a) occurs approximately at 2 kHz while
the chracteristic freuency, f, , predicted from Cockburn-Robertson formulus is about 1 kHz. The

highest frequencies shown in the figure are still within the “universal” range. Down stream
where the boundary layer is thick, the peak frequency, as shown in Fig. 15(b), occurs below 100

Hz ( f, 48.5 Hz, from Cockburn-Robertson). Only the universal and higher frequency ranges

defined by Smol’yakov are now displayed in the figure. The peak frequencies predicted by the
Chase (Eq. 30), Witting (Eq. 34), and Smol’yakov (Eq. 58) formula are in good agreement.
Goody’s peak frequency occurs at slightly lower frequency. Both the Cockburm-Robertson (Eq.
53) and Smol’yakov-Tkachenko (Eq. 54) spectra, however, do not display spectral peaks near
their corresponding characteristic frequencies. The Cockburn-Robertson spectrum was intended
for vehicles at transonic and supersonic speeds and it may not be applicable for the lower speed
ground or marine vehicles.

The spectra calculated using Chase, Goody and Smol’yakov expressions are within 5 dB of each
other, exept at very low frequencies and at frequncies beyong the universal range, @ >0.2. It is

noted that the high frequency behavior of Chase’s spectrum is such that ¢, (@) < w'asw—o oo,



which may not be accurate at frequencies beyond the universal range. The spectra calculated
using Witting, Cockburm-Robertson and Smol’yakov-Tkachenko expressions deviate
substantially from that calculated from Chase, Goody and Smol’yakov’s expressions. A more
thorough evaluation of the frequency spectral models will be given later in Section 4. As will be
shown later, Smol’yakov (2000) and Goody (2002) models appear to be more accurate.
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Figure 15. Wall Pressure Frequency Spectra Calculated from Chase (1987), Witting
(1986), Smol’yakov and Tkachenko (1991, labeled S & T), Smol’yakov
(2000), Goody (2002) and Cockburn-Robertson (1974, labeled C & R) Models

4.0 EXPERIMENTAL VERIFICATION OF THE MODELS

A historical and theoretical overview has been given of the detailed features of various models of
the turbulent boundary layer wall pressure wavevector-frequency spectra and the corresponding
cross-spectral density functions. A model most suitable for underwater applications must be
selected. However, the available measured underwater data are quite limited. Wall pressure
spectral data exists from a 0.2 inch (5 mm) diameter hydrophone located 0.45 meter from the
bow of a buoyancy test vehicle (BTV) at 21.34 m/s flow speed (Abarbanel, Katz, and Cembrola,
1994). Further down stream, about 9.45 meter from the bow, wall pressure data exists from a
1/10 inch (2.54 mm) diameter hydrophone mounted on a large scale buoyancy test model at 13
m/s flow speed. These data provide an opportunity to assess the current capability of predicting
the wall pressure frequency spectra at very thin (the former) and very thick (the latter) boundary
layer thicknesses. The latter set of data was obtained from a flush mounted sensor designed to
monitor the TBL characteristics in a conformal array experiment reported by Sherman, Ko, and
Buehler (1990).

Validating the wavevector-frequency spectrum requires measurements by larger hydrophones,
arrays of hydrophone, or flow-induced vibrations of underwater structures. The array data
reported by Sherman, Ko, and Buehler (1990) are limited only up to a few hundred Hz, not high
enough for useful verification. Flow noise measurements by Haddle and Skudrzyk (1969) used
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various shapes of hydrophone with diameters up to two inches mounted on the surface of a metal
buoyant unit (19 inch diameter, 12 feet S inch long, Y% inch thick aluminum shell). Pressure
sensors were mounted at two locations: 17 inch from and bow, and 142 inch from the bow. This
provides a broad range of boundary layer thickness and Strouhal number due to the wide range
of frequencies reported (160 Hz to 40 kHz). The 1-inch diameter hydrophone data are the most
consistent with the expected dependency in frequency and boundary layer thickness (or Strouhal
number).

The wall pressure spectrum measured by a finite size circular pressure sensor, @, (@), with

uniform pressure sensitivity can be calculated when the wavevector-frequency spectrum and the
wavenumber response function, H(k,,k,), are given (Ffowcs Williams, 1982; Capone and

Lauchle, 1995):

(60)

2
where H (k,,k;) = [2], +kla)l + kfa] , and a is the radius of the pressure sensor. The

wavenumber response function, H (k,,k,), has uniform wavenumber sensitivity when the
diameter is near zero. When the sensor diameter is large, it becomes essentially a low-pass
wavenumber filter. Fig. 16 shows the calculated H(k,,0) for 1/10-inch and 1-inch circular
transducers at 100 Hz, 1000 Hz and 10,000 Hz, plotted as a function of k,/k_assuming U_=15
m/s. Itis shown that in a 1-inch diameter sensor, the convective ridge excitations will be
effectively filtered out. Fig. 17 shows the product, ® p(k,,O,w)H (k,,0), where the integrated sum
will be the sensor measured frequency spectral density. It is also shown that at 10 kHz, the per
wavenumber contributions by the convective ridge to the 1 inch phone pressure are about 15 dB
lower than that contributed by the low wavenumber region, indicating a significant low

wavenumber contributions at high frequencies for a large sensor. At very low frequency, e.g.,
100 Hz, there is no filtering effect for both 1/10-inch and 1-inch sensor.
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Figure 16. Wavenumber Filtering Effects of 1/10-inch and 1-inch Circular
Transducers at 100 Hz, 1000 Hz and 10,000 Hz (U_=15 m/s), where
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Figure 17. Filtered Spectral Contributions, @ ,(k,,0,w)H (k,,0), to the 1/10-inch and 1-inch
circular Transducers at 100 Hz, 1000 Hz and 10,000 Hz (U_=15 m/s)
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According to Egs. (22) and (60), The ratio of the measured pressure by a finite sensor and the
point pressure, @, (w)/ ¢,(w), can be calculated as follows:

(61)

where f(k, ,k;) is the normalized dimensionless spectrum, and @, (w)/ ¢p(a)) is the so called

Corcos attenuation factor. The point frequency @,(w) is contributed by all wavenumbers without

attenuation. Due the increase of attenuation at a given wavenumber increases with frequency, the
major contributions to @, (@) will be shifted to lower wavenumbers as frequency is increased.

Using Eq. (60), the contributions to @, (w)/@,(w) by three sub-regions: (1) the wavenumber
spectrum in the acoustic domain where |k| < w/c, (2) the low wavenumber region where
w/c<|k|<k, /4,-eo<|k;| <o, (3) the subconvective and ridge regions where

wl/c< Ikl| <k /4,-o< |k3| < oo, and the entire wavenumber range, where —oo < |k,| <oo,

—o0 < [k,| < e are computed.

Fig. (18a) compares the overall ¢, (w)/ 2, (w) calculated from the Corcos, Modified Corcos, and

the Combined Chase spectra for the one-inch diameter circular phone located 17 inches from the
bow with a flow speed of 21.6 m/s. Figs. (18b), (18c) and (18d), on the other hand, show the

relative contributions by the three regions calculated from the Corcos, Modified Corcos, and the
Combined Chase spectra, respectively. This shows that due to the much higher low wavenumber

spectrum, the value ¢, (w)/@,(w) predicted by the Corcos spectrum is much higher than that

predicted by the Modified Corcos and the Combined Chase spectra. As it is shown in Fig. 18b,
the low wavenumber region becomes dominant source above 2 kHz when the Corcos spectrum is
used. However, when the Modified Corcos and the Combined Chase spectra are used, the
excitations are still dominated by the convective ridge region up to approximately 5,000 Hz.
Above 5,000 Hz, the low wavenumber region is then the predominant source, and above 10 kHz,
both the low wavenumber and acoustic regions are equal likely the predominant source. There is
no noticeable differences in the values of @,,(w)/@,(w) predicted by the Modified Corcos and

the Combined Chase spectra. The reasons for this are: (1) At low and mid frequencies, the
excitation is dominated by the convective ridge and the subconvective region (the higher
wavenumber portion of the low wavenumber region), where there is little difference between the
two spectra. The differences occur at lower wavenumbers (including the acoustic regions) which
are not the dominant source at low and mid frequencies, (2) At higher frequencies, the Combined
Chase non acoustic low wavenumber spectra are close to that of the Modified Corcos spectra
(see Fig. 14), and (3) In the entire frequency range shown, the acoustic region has no dominant
influence in the excitation due the limitation of the sensor area. The differences may only be
realizable when predictions are made for a large array of sensors or a large structure.
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Figure 18. Comparison of ¢, (w)/ (z)p(a)) Calculated from the Corcos, Modified Corcos,
and the Combined Chase Spectra.

Calculations of the ratio between the hydrophone measured pressure and the theoretical point
pressure, ¥(w) [= @, (w)/ ¢p(a))] for the various models of f (E, ,E3 ) have been discussed

above. This ratio is independent of which point spectral model is used. The calculated pressure
spectrum measured by a finite size sensor is obviously

(62)

which will then depend on which point frequency, ¢,(®), spectral model in used. For the

purpose of comparing the performance of the various point frequency spectral models, the
Modified Corcos spectrum is used for calculating y(w) due to its simplicity. The other reason is

because there is no difference between using the Combined Chase or the Modified Corcos
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spectra for hydrophones up to 1 inch in diameter. Figs. 19 and 20 show the calculated results
using four different point frequency spectral models (Chase, Goody, Smol’yakov-Tkachenko,
and Smol’yakov models). Predicted values are shown in solid lines while the corresponding data
are shown in dotted lines. The Smol’yakov-Tkachenko model results are labeled “S & T”. Fig.
19 shows the results for two upstream sensors: one is the 0.2 inch BTV senor located at 0.45
meter from the bow at 21.3 m/s flow speed, the other is the 1 inch Haddle and Skudrzyk sensor
located at 0.43 meter from the bow at 21.6 m/s flow speed. Predicted trends by all models are
consistent with the data. However, the most recently published models by Smol’yakov (2000)
and Goody provide a slightly better overall agreement with data. Fig. 20 shows the results for
two downstream sensors: one is the 0.1 inch senor located at 9.45 meter from the bow of a large
scale buoyant unit at 13 m/s flow speed, the other is the 1 inch Haddle and Skudrzyk sensor
located at 3.6 meter from the bow at 21.6 m/s flow speed. Predicted trends by all models are also
consistent with the data. Again, the most recently published models by Smol’yakov (2000) and
Goody (2002) provide the better overall agreement with data.
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Figure 19. Predicted and Measured results for the 0.2 inch BTV senor located at 0.45 meter
from the bow at 21.3 m/s flow speed and the 1 inch Haddle and Skudrzyk sensor
located at 0.43 meter from the bow at 21.6 m/s flow speed.
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Figure 20. Predicted and Measured Results for the 0.1 inch Senor Located at 9.45 Meter
from the Bow in a Large Scale Buoyant Unit at 21.3 m/s Flow Speed and the
1 inch Haddle and Skudrzyk Sensor Located at 3.6 Meter from the Bow at
21.6 m/s Flow Speed.

Predicted values are generally lower than that measured at larger Strouhal numbers. In the
upstream sensors, predicted values become lower beginning around 4000 Hz while the down
stream sensors beginning around 400 Hz. It is suspected that hull vibrations may contribute to
the measured pressure by the hull mounted sensors. Based on plate theory, the spatial mean
velocity response of an infinite plate ¢,(@) can be determined if the wavevector-frequency

spectrum is given, i.e.,

2P2

T°w
p@= . ”d)p(k,,k3a)), (63)

6
P

where k; is the plate bending wavenumber, and D = ER*/112(1 - vz)p,]. The vibration induced
pressure spectrum, ¢, (@) is then approximately,
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(64)

When the vibration induced pressure is added, the ratio between the measured pressure by a
finite sensor and the point pressure, @, (@)/ ¢p(a)). is then calculated as follows:

Fig. 21 shows the results for the upstream (x=17" or 0.45 m) and downstream (x=142" or 3.6 m)
sensors (both 1-inch diameter) in the Haddle-Skudrzyk experiments. The curves labeled,
“HYDRODYNAMIC” are the predicted pressures contributed by TBL pressures; the curves

labeled, “VIB-Chase87” and “VIB-Corcos” are the predicted ¢, ,(w)/¢,(w) values using the

Chase-1987 and the Modified Corcos spectra, respectively. This analysis indicates that above 4
kHz the vibration induced noise may be significant in the Haddle-Skudrzyk experiments, and
predicted noise will be closer to that measured when the vibration caused noise is included.
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Figure 21. Predicted ¢, (w)/¢,(w) contributed by TBL Pressures and hull Vibrations

Figs. 22 shows the calculated results with the vibration induced pressures included for both the
upstream and down stream sensors, using the normalized Modified Corcos wavevector spectrum
and Smol’yakov’s point frequency spectrum. Again, the upstream sensors are the 0.2 inch BTV
senor located at 0.45 meter from the bow at 21.3 m/s flow speed and the 1 inch Haddle and
Skudrzyk sensor located at 0.43 meter from the bow at 21.6 m/s flow speed; the downstream
sensors are the 0.1 inch senor located at 9.45 meter from the bow of a large scale buoyant unit at
13 m/s flow speed, the other is the 1 inch Haddle and Skudrzyk sensor located at 3.6 meter from
the bow at 21.6 m/s flow speed. Due to the predominant contributions by the convective
pressures in the small sensors, such as the 0.1 inch and the 0.2 inch hydrophones, adding
vibration caused pressures does not affect the predicted ¢,, (@) at these sensors. However, with
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the vibration caused pressures included, the agreement between the predicted and measured
values are much improved for the larger sensors, such as the 1 inch hvdrophones.
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Figure 22. Predicted and Measured results for four Different Sensors at Different
Locations of Buoyancy Propelled Vehicles when the Vibration Caused
Pressures are Added

5.0 CONCLUDING REMARKS AND FUTURE WORK

A thorough examination of the theories, data, and empirical models of the wavevector-frequency
spectrum as well as the cross-spectrum of the turbulent boundary layer wall pressures and shear
stresses has been conducted for the purpose of seeking suitable structural forcing functions. The
study indicates it is not possible to obtain a proper cross-spectral density function to serve as a
structural loading function from experimental two-point correlation measurements. Determining
the low wavenumber pressures must rely on the measured responses of a structural system or an
array of pressure sensors subjected to TBL excitations. The cross-spectrum can be subsequently
obtained from the inverse Fourier transform of the wavevector-frequency spectrum.

models of wavevector-frequency spectrum have been investigated and compared with
experimental data. Recent publications by Chase (1991, 1993) and Dowling (1998) demonstrate
the near wall viscous shear stress contributions to the low wavenumber pressures should be
included. Judging from the consistency with theories and data, Chase’s 1987 inviscid flow
spectrum is the most theoretically rigorous model. By combining this model with Chase’s 1993
semi-empirical shear stress model, a so called “Combined Chase Spectrum” is developed and
presented as the most comprehensive model for underwater applications. A point frequency
spectra assessment suggested the most recently published models by Smol’yakov (2000) and
Goody (2002) are the most accurate.

A verification analysis indicated there is little distinction between using the Modified Corcos
spectrum and the Combined Chase spectrum for pressure sensor sizes up to one inch and
frequencies as high as 20 kHz. The reasons for this are: (1) At low and mid frequencies, the
excitation is dominated by the convective ridge and the subconvective region (the higher
wavenumber portion of the low wavenumber region), where there is little difference between the
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two spectra. The differences occur at lower wavenumbers (including the acoustic region) which
are not the dominant source at low and mid frequencies, (2) At higher frequencies, the Combined
Chase non acoustic low wavenumber spectra are close to that of the Modified Corcos spectra
(see Fig. 14), and (3) In the frequency range reported, the acoustic region has no dominant
influence in the excitation due to the limitation of the sensor area. The differences may only be
realizable when predictions are made for a large array of sensors or a large structure. Using
Smol’yakov’s (2000) point frequency model in conjunction with the normalized Modified

Corcos wavevector-frequency spectrum (normalized by ¢, (@)U ./ w)*®), pressure spectra are

predicted with reasonable accuracy up to 20 kHz measured by hydrophones from 0.1-inch to 1-
inch diameter flush mounted on various buoyancy propelled vehicles. This prediction involves
the whole range of wavenumbers since in a larger hydrophone, such as the 1-inch phone at 42
knots, the excitations are dominated by the low-wavenumber wall pressures above 5 kHz. For
analysis using finite-element structural models, the Modified Corcos cross-spectral density
function is recommended due to its simplicity and applicability to a broad range of wavenumbers
and frequencies. Nonetheless, both the wavevector-frequency spectral and cross-spectral density
models will be continuously updated and improved as new data becomes available.

The spectral models presented in this report are applicable to low-speed equilibrium flows, and
are mostly semi-empirical models evolved from the physical understandings acquired from the
classical analyses in fluid dynamics and acoustics. Computational fluid dynamics is an emerging
field for the calculation of turbulent flows. Direct numerical simulation (DNS; e.g., Hansen,
Handler, Leighton, and Orszag, 1987; Choi and Moin, 1990), large eddy simulation (LES; e.g.,
Hughes, Mazzei, and Oberai, 2001), or a hybrid of RANS (Reynolds-Averaged Navier-Strokes)
and LES modeling technique (e.g., Peltier, Zajaczkowski, and Wyngaard, 2000) have been used
with success, particularly at low Reynolds numbers. A thorough review on the progress and
accomplishment in this field may help to gain further understanding to resolve some of the
modeling issues on TBL wall pressures. In non-equilibrium flows, the effects of pressure
gradients (e.g., Schloemer, 1967, Cipolla and Keith, 2000) and the laminar-turbulent transitions
(e.g., Josserand and Lauchle, 1990; Marboe, 2000; Snarski, 2000) are important. These effects
are not well understood, and are not covered in this study. A similar analysis shown in this report
may prove to be fruitful to provide a useful modeling guideline to predict these effects.
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